$S=1.074$

6661 reflections
326 parameters
H atoms treated by a mixture of independent
and constrained refinement
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=0.486 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.579 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\AA \mathrm{A}^{\circ}{ }^{\circ}$)

$\mathrm{Cu}-\mathrm{O} 1$	$1.938(2)$	$\mathrm{Cu}-\mathrm{N} 1 B$	$1.985(2)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.947(2)$	$\mathrm{Cu}-\mathrm{O} 11$	$2.216(2)$
$\mathrm{Cu}-\mathrm{N} 1 A$	$1.984(2)$		
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$83.95(8)$	$\mathrm{N} 1 A-\mathrm{Cu}-\mathrm{N} 1 B$	$81.65(10)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1 A$	$167.47(10)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 11$	$97.36(9)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1 A$	$96.18(9)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 11$	$99.16(9)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1 B$	$95.38(9)$	$\mathrm{N} 1 A-\mathrm{Cu}-\mathrm{O} 11$	$94.99(9)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1 B$	$166.87(10)$	$\mathrm{N} 1 B-\mathrm{Cu}-\mathrm{O} 11$	$93.94(10)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H.. A	D... A	D-H. . A
O11-H111...O4 ${ }^{1}$	0.79 (1)	2.35 (2)	2.947 (3)	134 (1)
O11-H111...O5 ${ }^{\text {i }}$	0.79 (1)	2.27 (2)	2.999 (3)	153 (1)
O11-H112 ${ }^{\text {O }} 4^{\text {1i }}$	0.81 (1)	1.97 (2)	2.777 (3)	173 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 A^{\cdots} \cdots \mathrm{N} 1 L^{\text {iii }}$	0.93	2.42	3.349 (10)	176.9
$\mathrm{C} 3 B-\mathrm{H} 3 B \cdots \mathrm{Nl} L^{\mathrm{m}}$	0.93	2.48	3.403 (11)	174.9
C5A-H5A...O42A ${ }^{16}$	0.93	2.51	3.210 (4)	132.6
C 6 B-H6B $\cdots \mathrm{Ol}$	0.93	2.58	3.082 (4)	114.5
$\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{Cl}{ }^{\text {v }}$	0.93	2.767	3.541 (4)	141.3
C51B-H51D...O11 ${ }^{\text {vi }}$	0.96	2.387	3.292 (5)	157.1

Symmetry codes: (i) $x-1, y, z ;$ (ii) $1-x,-y, 1-z ;$ (iii) $-x,-y, 1-z$; (iv) $-x,-1-y, 1-z:(\mathrm{v}) 1-x, 1-y,-z ;$ (vi) $-x, 1-y,-z$.

The three coordinating ligands were refined anisotropically and the positions of the H atoms were calculated and refined using a riding model. The water H atoms at Oll were located in a difference electron-density map and were refined with isotropic displacement parameters using $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.82 (2) and 1.30 (2) \AA, respectively. The acetonitrile solvent molecule was located by interpreting two electron-density peaks near a centre of symmetry with a very short inter-peak distance of about $1.10 \AA$. Application of the symmetry operation resulted in four atomic positions of which the central generated peak to peak distance was approximately $1.45 \AA$. Thus, the peak near the centre was assigned to a C atom and a rigid model of acetonitrile was refined with distance restraints $[\mathrm{N} 1 L-\mathrm{C} 1 L A=1.140(15)$ and $\mathrm{C} 1 L A-$ $\mathrm{C} 1 L B=1.453(15) \AA]$. The positions of the H atoms of the methyl $\mathrm{Cl} L B$ atom were calculated in a previous refinement with SHELXL97 (Sheldrick, 1997) using the HFIX 137 option and a dummy C atom. The H -atom coordinates were fixed in the final refinement cycles. All atoms of the acetonitrile solvent molecule were refined with a site occupancy factor of 0.5 and isotropic displacement parameters.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97. Molecular graphics: PLATON and PLUTON (Spek, 1990). Software used to prepare material for publication: SHELXL97.

We express gratitude to the Swiss National Science Foundation for financial support under project No. 2045750.95

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1187). Services for accessing these data are described at the back of the journal.

References

Coppens, P., Leiserowitz. L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cueto, S.. Straumann, H.-P., Rys, P., Peter. W.. Gramlich. V. \& Rys, F. (1992). Acta Crust. C48, 458-460.

Decurtins, S., Schmaile, H. W., Schneuwly, P., Ensling. J. \& Gütlich, P. (1994). J. Am. Chem. Soc. 116, 9521-9528.

Decurtins, S., Schmalle. H. W.. Schneuwly, P. \& Zheng, L.-M. (1996). Acta Cn:st. C52, 561-566.
Decurtins, S., Schmalle, H. W., Zheng, L.-M. \& Ensling, J. (1996). Inorg. Chim. Acta. 244, 165-170.
Enraf-Nonius (1989). CAD-4 Softuare. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kawata, S., Kitagawa. S.. Kondo, M.. Furuchi, I. \& Munakata, M. (1994). Angen: Chem. Int. Ed. Engl. 33, 1851-1854.

Kawata, S., Kitagawa, S.. Kumagai, H., Kudo, C., Kamesaki. H., Ishiyama, T., Suzuki, R., Kondo. M. \& Katada. M. (1996). Inorg. Chem. 35, 4449-4461.
Pellaux, R., Schmalle, H. W., Huber. R., Fischer. P.. Hauss, T., Ouladdiaf, B. \& Decurtins. S. (1997). Inorg. Chem. 36, 2301-2308.
Sheldrick. G. M. (1990). Acta Crist. A46. 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek. A. L. (1990). Acta Cryst. A46. C-34.
Sprintschnik, G., Sprintschnik, H. W... Kirsch. P. P. \& Whitten, D. G. (1977). J. Am. Chem. Soc. 99, 4947-4954.

Zheng, L.-M.. Schmalle, H. W., Huber. R. \& Decurtins, S. (1996). Polyhedron. 15, 4399-4405.

Acta Cryst. (1998). C54, 1580-1582

A New Dinuclear Molybdenum Compound, $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Mo}_{2}(\mathrm{CO})_{6}(\mathbf{S P h})_{2}\left(\mathrm{CH}_{2} \mathrm{CCH}_{3} \mathbf{C O O}\right)\right]$

Guohua Pan, Botao Zhuang* and Jutong Chen
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry: Fu:hou, Fujian 350002, People's
Republic of China. E-mail: zbt@ms.fjirsm.ac.cn

(Received 7 January 1998: accepted 20 April 1998)

Abstract

The crystal structure of the title compound, tetrabutylammonium bis $(\mu$-benzenethiolato- $S: S)$ - μ-methacrylato$O: O^{\prime}$-bis(tricarbonylmolybdenum) $(\mathrm{Mo}-\mathrm{Mo}), \quad\left(\mathrm{C}_{16} \mathrm{H}_{36}{ }^{-}\right.$ $\mathrm{N})\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)_{2}(\mathrm{CO})_{6}\right]$, shows that it contains a $\mathrm{Bu}_{4} \mathrm{~N}^{+}$cation and a dinuclear anion with three bridging ligands, i.e. $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{6}(\mathrm{SPh})_{2}\left(\mathrm{CH}_{2} \mathrm{CCH}_{3} \mathrm{COO}\right)\right]^{-}$; the
α-methacrylate group acts as a bidentate bridging ligand and coordinates two Mo atoms to form a five-membered ring. The Mo-Mo bond distance is $2.9115(5) \AA$ and the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angle is $125.8(4)^{\circ}$.

Comment

The structures of dinuclear molybdenum-carbonyl compounds containing thiolato bridges, $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{8}(\mathrm{SPh})_{2}\right]$ [(II); Zhuang et al., 1995] and $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{8}\left(\mathrm{SCH}_{2} \mathrm{COO}-\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$] (Zhuang et al., 1987), have been determined previously. These compounds possess an interesting electrochemical behavior of a reversible twoelectron transfer occurring in one step; also, the axial carbonyl of these compounds can be substituted by the coordinating solvent, e.g. $\mathrm{CH}_{3} \mathrm{CN}$, to afford the product $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{6}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(\mathrm{SPh})_{2}\right]$ (Zhuang et al., 1989). We now extend our studies to include compounds where carboxylate ligands substitute the carbonyl ligands of (II) and report the structure of the title compound, (I).

(I)

The structure of the anion of (I) is shown in Fig. 1. Each Mo atom has a distorted octahedral geometry involving three carbonyl C atoms, two S atoms from bridging SPh groups and one O atom from an α-methacrylate ligand. Two $\mathrm{fac}-\mathrm{Mo}(\mathrm{CO})_{3}$ fragments are linked together by two SPh and one α-methacrylate ligand forming a hetero-tribridged dimer, which can be considered as an edge-sharing bi-octahedral structure.

Fig. 1. View of the anion of the title compound with displacement ellipsoids shown at the 30% probability level and H atoms omitted for clarity.

The structure of the $\mathrm{Mo}_{2} \mathrm{~S}_{2}$ unit in the title compound is similar to that in compound (II). On introduction of the α-methacrylate ligand, the $\mathrm{Mo}_{2} \mathrm{~S}_{2}$ unit contracts slightly, resulting in smaller Mo-S-Mo angles and a shorter Mo-Mo distance. Interestingly, however, the Mo-S distances are essentially equal to those of (II). The trans-Mo-C distances are considerably shorter than those cis to the α-methacrylate ligand. The α-methacrylate ligand substitutes for two axial carbonyls of (II) to form an approximately planar Mo-O-C-O-Mo five-membered ring [Mo-Mo 2.9115 (5) Å]. As a result of this long Mo-Mo distance, the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angle [125.8(4) ${ }^{\circ}$] is slightly wider than a normal $s p^{2}$ angle (120°).

Experimental

The title compound was synthesized by the reaction of $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{8}(\mathrm{SPh})_{2}\right]$ with Bu 4 NBr and $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COONa}$ ($1: 1: 1$) in acetone, and crystallized by allowing the filtrate, with added ${ }^{\text {i }} \mathrm{PrOH}$, to stand at a temperature below 273 K for several days.

Crystal data

$\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)\right.$ -
$\left.\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)_{2}(\mathrm{CO})_{6}\right]$
$M_{r}=905.80$
Monoclinic
$P 2_{1} / c$
$a=15.1675(4) \AA$
$b=11.9640$ (3) \AA
$c=24.1413(4) \AA$
$\beta=103.156(1)^{\circ}$
$V=4265.8$ (2) \AA^{3}
$Z=4$
$D_{x}=1.410 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction:
empirical (SADABS;
Sheldrick, 1996)
$T_{\text {min }}=0.664, T_{\text {max }}=0.868$
14825 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.098$
$S=1.090$
7172 reflections
460 parameters
H atoms: riding model
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0245 P)^{2}\right.$
$+4.4211 P \mathrm{~J}$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 7334 reflections
$\theta=1.38-25.02^{\circ}$
$\mu=0.733 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.70 \times 0.35 \times 0.26 \mathrm{~mm}$
Green

7172 independent reflections
5177 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.02^{\circ}$
$h=-11 \rightarrow 18$
$k=-14 \rightarrow 10$
$l=-28 \rightarrow 28$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.387 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.394 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Mol-C1}$	1.938 (5)	Mo2-C5	1.942 (5)
Mol-C2	1.995 (5)	Mo2-C6	1.992 (6)
Mol-C3	2.026 (6)	Mo2-C4	2.006 (5)
Mol-O31	2.228 (3)	Mo2-O32	2.245 (3)
$\mathrm{Mol-S1}$	2.4527 (12)	Mo2-S1	2.4774 (12)
Mol-S2	2.4809 (12)	Mo2-S2	2.4950 (13)
Mol-Mo2	2.9115 (5)		
$\mathrm{Cl}-\mathrm{Mol-O} 31$	175.5 (2)	C6-Mo2-S1	85.38 (14)
C2-Mol-O31	100.5 (2)	C4-Mo2-S1	157.50 (14)
$\mathrm{C} 3-\mathrm{Mol-O31}$	87.8 (2)	O32-Mo2-S1	77.83 (8)
Cl -Mol-S1	98.9 (2)	C5-Mo2-S2	83.9 (2)
C2-Mol-S1	82.72 (15)	C6-Mo2-S2	163.33 (15)
C3-Mol-S1	158.9 (2)	C4-Mo2-S2	86.6 (2)
O31-Mol-S1	77.95 (8)	O32-Mo2-S2	90.09 (8)
$\mathrm{C} 1-\mathrm{Mol}-\mathrm{S} 2$	85.99 (15)	S1-Mo2-S2	107.36 (4)
C2-Mol-S2	164.8 (2)	C5-Mo2--Mol	96.84 (15)
C3-Mol-S2	87.12 (15)	C6-Mo2-Mol	137.27 (14)
O31-Mol-S2	92.01 (8)	C4-Mo2-Mol	137.5 (2)
S1-Mol-S2	108.60 (4)	O32-Mo2-Mol	80.69 (8)
$\mathrm{C} 1-\mathrm{Mol}-\mathrm{Mo} 2$	93.22 (15)	S1-Mo2-Mol	53.41 (3)
C2-Mo1-Mo2	135.55 (15)	S2-Mo2-Mol	53.96 (3)
C3-Mol-Mo2	139.60 (14)	C11-S1-Mol	113.97 (15)
O31-Mol-Mo2	82.34 (8)	C11-S1-Mo2	120.3 (2)
$\mathrm{S} 1-\mathrm{Mol}-\mathrm{Mo} 2$	54.20 (3)	Mol-SI-Mo2	72.39 (3)
S2-Mol-Mo2	54.41 (3)	C21-S2-Mol	117.2 (2)
$\mathrm{C} 5-\mathrm{Mo} 2-\mathrm{O} 32$	173.9 (2)	C21-S2-Mo2	113.3 (2)
C6-Mo2-032	103.4 (2)	Mol-S2-Mo2	71.62 (3)
$\mathrm{C} 4-\mathrm{Mo} 2-\mathrm{O} 32$	84.8 (2)	$\mathrm{C} 31-\mathrm{O31}-\mathrm{Mol}$	124.9 (3)
C5-Mo2-S1	105.29 (14)	$\mathrm{C} 31-\mathrm{O} 32-\mathrm{Mo} 2$	126.2 (3)

H atoms were all located theoretically and refined. Structure solution and refinement were carried out on an Indy workstation of a Silicon Graphics instrument with SHELXTL/PC (Sheldrick, 1994).

Data collection: SMART (Siemens, 1996). Cell refinement: local programs. Data reduction: SAINT (Siemens, 1994). Program(s) used to solve structure: SHELXTL/PC. Program(s) used to refine structure: $S H E L X T L / P C$. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXTL/PC and local programs.

We are grateful to NNSF and SKLSC for financial support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1087). Services for accessing these data are described at the, back of the journal.

References

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1994). SHELXTLPC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Program for Absorption Correction. University of Göttingen, Germany.
Siemens (1994). SAINT Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhuang, B., Huang, L. \& He, L. (1995). Chin. J. Struct. Chem. 14, 359-363.
Zhuang, B., Huang, L., He, L., Yang. Y. \& Lu, J. (1987). Inorg. Chim. Acta, 127, L7-8.
Zhuang, B., Huang, L., He, L., Yang, Y. \& Lu, J. (1989). Acta Chim. Sin. 47, 25-30.

Acta Cryst. (1998). C54, 1582-1584

(-)-Sparteine Copper(II) Dinitrite \dagger

Yong-Min Lee, ${ }^{a}$ Sung-Nak Choi, ${ }^{a}$ IL-Hwan SuH ${ }^{b}$ and Robert D. Bereman ${ }^{c}$
${ }^{a}$ Department of Chemistry, Pusan National University,
Pusan 609-735, Korea, ${ }^{b}$ Department of Physics, Chungnam
National University, Taejon 305-764, Korea, and
${ }^{\text {' Department of Chemistry, North Carolina State University, }}$ Raleigh, North Carolina 27695-8204, USA. E-mail:
sunachoi@hyowon.cc.pusan.ac.kr

(Received 18 August 1997; accepted 16 April 1998)

Abstract

The title complex, $\left[\mathrm{Cu}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\right]$, has been prepared and its crystal structure determined. The chiral nitrogen-chelating alkaloid (-)-sparteine acts as a bidentate ligand, reacting with one $\mathrm{Cu}^{\text {II }}$ ion in ethanol to form the title complex, with two nitrite groups occupying the remaining coordination sites to produce a distorted five-coordinate square-pyramidal structure. One nitrite is bound through one O atom and the other nitrite acts as a η^{2}-chelating group.

Comment

Over the past two decades, several studies of transition metal complexes of the neutral alkaloid (-)-sparteine $\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)$ have been reported (Boschmann et al., 1974, 1978; Fraencel et al., 1974; Childers et al., 1975; Wrobleski \& Long, 1977), and the crystal and molecular structures of some sparteine metal complexes of the type [$M X_{2}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)$] have been determined (Togni et al., 1990; Choi et al., 1995).

Previously, we determined the crystal structure of (-)-sparteine copper(II) dinitrate, and found that molecules of this compound are mixed four- and fivecoordinate in one crystalline phase and only fourcoordinate in the other (Choi et al., 1995). These results indicate the near electronic energy equivalence of fourand five-coordination about Cu^{11} in this compound. This is a rare example of a pure compound which displays two different coordination numbers in the same crystalline structure.

The nitrite ion, like the nitrate ion, can coordinate to a metal in either a mono- or bidentate fashion, and we expected that (- -sparteine copper(II) dinitrite, (I), might also exhibit similar structural features. However, the $\mathrm{Cu}^{\mathrm{II}}$ ion in this complex is exclusively five-coordinate, with a highly distorted square-pyramidal geometry in

[^0]
[^0]: \dagger Alternative name: $\quad\{1,3,4,7,7 \mathrm{a}, 8,9,10,11,13,14,14 \mathrm{a}$-dodecahydro-7,14-methano- $2 H, 6 H$-dipyrido[1,2-a: $\left.1^{\prime}, 2^{\prime}-e\right][1,5]$ diazocine- $\left.N, N^{\prime}\right\}$ -dinitrito- $O ; O, O^{\prime}-\operatorname{copper}($ II $)$.

